Dockets Management Staff (HFA-305) Food and Drug Administration 5630 Fishers Lane, Rm. 1061 Rockville, MD 20852

Re: Food Labeling: Front-of-Package Nutrition Information, A Proposed Rule by the Food and Drug Administration (Docket No. FDA-2024-N-2910)

We are academic researchers who study the effects of food labels on consumer knowledge and behavior, including how to design food labeling policies to best inform consumers about a food's nutrient profile and health risks. We appreciate the FDA's continued commitment to educating consumers about the nutritional content of their food by requiring front-of-package nutrition labels. We strongly support the FDA's proposal to:

- 1. Adopt a front-of-package nutrition labeling system.
- 2. Mandate front-of-package nutrition labels, rather than proposing a voluntary labeling system.
- 3. Interpret nutrition information for consumers, rather than providing solely numeric information.
- 4. Highlight high amounts of the most important nutrients to limit (added sugars, sodium, and saturated fat), rather than including nutrients to increase (e.g., dietary fiber).

We suggest several amendments to the proposed rule, which would help consumers more easily use and understand the labels. These include:

- 5. Adopt a High In labeling scheme, which would display labels only on products high in added sugars, sodium, or saturated fat.
- 6. <u>Incorporate visual elements</u> that make the labels easier to see and understand (e.g., the color red, an exclamation mark, a triangle shape, a contrasting background so the label stands out from the rest of the packaging).
- 7. Mandate front-of-package nutrition labels on all packaged food and drinks, <u>including</u> those marketed to infants and toddlers.
- 8. Mandate a <u>non-sugar sweetener disclosure</u> that would accompany the front-of-package labeling rule.
- 9. Require a multi-label scheme in which products carry a distinct label for each excess nutrient (e.g., a product high in added sugars and sodium would carry one "High In Added Sugars" label and one "High In Sodium" label).
- 10. <u>Use a nutrient profile model like Canada's</u>, which sets stricter thresholds for foods served in smaller portions. This ensures that snack foods, which are unlikely to exceed 20% DV thresholds due to their small size but are often high in sugar, sodium, and saturated fat *density*, receive the appropriate designation as "High In."

1. We support the FDA's proposal to adopt a front-of-package nutrition labeling system.

Currently, U.S. consumers must rely on the Nutrition Facts label for information about the nutritional content of products. Although this label is an important tool that should remain on products, it is infrequently used and poorly understood. An FDA study with a nationally representative sample of 4,398 Americans found that only 20% reported consistently using the Nutrition Facts label when buying a food for the first time, and 1 in 8 said they *never* look at these labels. Even when consumers look at the Nutrition Facts label, systematic reviews show they often have difficulty understanding its content. Moreover, use and understanding of the Nutrition Facts label are lower among groups with lower income and educational attainment. Even among adults with a college degree, nearly half cannot correctly interpret one or more aspects of the label.

In contrast to the low use of the Nutrition Facts label, many consumers use information presented on the front of food and beverage packaging.⁵⁻⁷ Eye tracking studies confirm the importance of front-of-package labels for drawing attention to nutrition information, finding that when products display both front-of-package labels and Nutrition Facts labels, consumers pay more attention to the front-of-package labels than the Nutrition Facts labels.^{8,9} Eye tracking studies have also found that when front-of-package food labels are added to products, consumers are more likely to notice nutrition information, find nutrition information more quickly, and pay attention to that information for longer, compared to when only the back-of-package Nutrition Facts label is present.¹⁰ In-person laboratory studies and real-world natural experiments confirm that adding front-of-package labels to products can improve food purchase behavior.¹¹⁻¹⁷ Thus, there is a clear need for a front-of-package nutrition label in addition to the Nutrition Facts label.

2. We support the FDA's proposal to mandate front-of-package nutrition labels, rather than adopt a voluntary labeling system.

Research consistently demonstrates that mandatory food labeling systems are more effective than voluntary systems. Evidence from other countries, including Belgium, France, Germany, Australia, and New Zealand, shows that voluntary labels are applied to only a small portion of the food supply. ¹⁸⁻²³ For example, only 28% of products displayed voluntary labels three years after New Zealand adopted the voluntary Health Star Rating (HSR) system. ¹⁸ By contrast, Chile's mandatory front-of-package labeling policy has resulted in almost perfect compliance, with 93% of products displaying the required labels. ²⁴ Furthermore, voluntary labels are more frequently displayed on healthier products. ^{18,20,21,25} This selective application can mislead consumers ²⁶⁻²⁸ and undermine the goal of providing accurate, easily comparable nutritional information across products. ^{29,30}

In addition to guiding consumers, mandatory front-of-package labels can also incentivize manufacturers to reformulate products to reduce the amount of nutrients of public health concern. Voluntary labeling systems, however, have been found to spur only very small changes to the food supply. Por example, within a few years of the voluntary implementation of the Health Star Rating system, the sodium content of labeled products declined by only 1.4% in Australia and 4% in New Zealand. By contrast, within a few years of

Chile's mandatory implementation of nutrient warning labels, the number of products classified as 'high in sodium' dropped by 63% and those classified as 'high in sugar' dropped by 25%.³⁶

Front-of-package nutrition labels can also facilitate other policies to improve dietary behaviors, but only if the labels are mandatory. For example, Chile's Law of Food Labeling and Marketing required front-of-package warning labels on products high in calories and other nutrients of concern. Products with warning labels cannot be promoted to children under 14 and cannot be served in schools.³⁷ This mandatory labeling system made it easy for schools to identify prohibited products.³⁸ This unified suite of policies also reinforced the message that consumption of labeled products should be limited.³⁹

3. We support the FDA's proposal to interpret nutrition information for consumers, rather than providing solely numeric information.

The current back-of-package Nutrition Facts label and voluntary front-of-package Facts Up Front labeling system display only numeric information about a product's nutritional profile. By contrast, interpretive labeling systems use words, colors, symbols, and/or icons to communicate nutrition information to consumers simply and quickly. The National Academy of Medicine recommended an interpretive labeling system over a decade ago, ⁴⁰ and considerable research supports using interpretative labels over numeric labels. ⁴¹⁻⁴⁴ Studies from several countries demonstrate that interpretative labels perform better than numeric labels at improving consumers' understanding of products' healthfulness. ⁴⁵⁻⁵³ Studies that examine consumers' purchase behaviors also find that interpretative labels improve the overall healthfulness of people's choices compared to numeric labels. ^{45,46,51,54-58} Many studies show that consumers prefer interpretive labeling systems to numeric ones. ^{56,59-61}

4. We support the FDA's proposal to highlight high amounts of the most important nutrients to limit (added sugars, sodium, and saturated fat), rather than including nutrients to increase (e.g., dietary fiber), on the front-of-package label.

Highlighting high amounts of added sugars, sodium, and saturated fat on the front of food packages is consistent with the 2020-2025 Dietary Guidelines for Americans (DGAs) recommendations. To support healthy dietary patterns, the DGAs recommend limiting saturated fat to less than 10% of calories, limiting added sugars to less than 10% of calories, and limiting sodium to less than 2,300 mg/day (and even lower in some population subgroups). Most Americans exceed the recommended intake limits for these nutrients, significantly contributing to chronic diseases, including heart disease, stroke, and type 2 diabetes. Ten other countries currently require front-of-package labels highlighting high amounts of sodium, saturated fat, and added sugars, and such policies have been associated with healthier food purchases. 14,17

Of note, the FDA's proposed labels do not include information about nutrients to encourage (e.g., dietary fiber, vitamin D, calcium, iron, and potassium), finding that their focus group participants were confused by labels including both nutrients to encourage and those to avoid.⁶⁴ This is consistent with studies of the voluntary Facts Up Front-style labels, which include both nutrients to encourage and avoid, and show no impact on consumer food choices.^{56,65-67} Food companies already highlight nutrients to encourage on the front of food packages (e.g., "Good source of

Vitamin D"), and will likely continue to do so voluntarily. Additionally, the FDA's "healthy" nutrient content claim will already allow companies to alert consumers to healthier products. Therefore, we support the FDA's proposal <u>not to allow</u> nutrients to encourage in the Nutrition Info box.

5. The FDA should adopt a High In labeling scheme, which would display labels only on products high in added sugars, sodium, or saturated fat.

The Nutrition Info box was selected as the preferred label design based on the FDA's experimental study results.⁶⁸ In that study, 9,200 U.S. adults were randomized to view one of eight front-of-package labeling schemes in an online survey, complete two sequential tasks, and answer questions about the labels they viewed. In the first task, participants viewed three nutrient profiles of a single labeling scheme and selected the most and least healthy profile. In the second task, participants viewed labels on the front of a food package and answered questions about the product's healthfulness and nutrient content. Although the Nutrition Info box performed better than the High In labels on measures of perceived nutrient content and overall nutritional profile, the experimental design did not capture how people interact with food labels in the real world.

When asked to closely examine labels in a controlled setting, it is intuitive that labels with more interpretive information (like the Nutrition Info box) will be more helpful to consumers than labels with less information (like the High In labels). In the real world, however, consumers are flooded with distracting information on store shelves and product packaging, often relying on simple visual cues to quickly judge a product's healthfulness.⁶⁹ While the FDA's study participants spent about 30 seconds responding to questions in the agency's survey, consumers shopping in a grocery store can make product decisions in as little as a third of a second.⁷⁰ Similarly, while the FDA study directed consumers to look at only a few food packages at a time, consumers in a real grocery store are confronted with dozens of packages at once for a given food selection. Studies that evaluate front-of-package labeling systems in the real world, and in contexts that better reflect a real shopping experience (e.g., an online store) provide evidence that High In labels are associated with healthier food choices.^{14,17,71-86} By contrast, real-world evidence for the effectiveness of the Nutrition Info box or similar multiple traffic light labels is extremely limited.

High In labels are preferable to the Nutrition Info box because they communicate a simple message – products carrying a label are less nutritious than those without a label. Research from Chile, which mandates High-In-style labels on packaged products, supports this assertion.³⁹ One study found that parents relied on the labels as a "quick shortcut" for identifying healthier products. In that study, even young children could interpret High-In-style labels, telling their parents not to buy them snacks with labels because they weren't allowed in school. High In labels clearly delineate less healthful foods from more healthful ones when applied to the U.S. food supply. A recent study found that approximately 49% of products purchased at a supermarket chain would be required to carry a High In label under the FDA's scheme.⁸⁷

In contrast to High In labels, consumers cannot rely on the presence or absence of a Nutrition Info box to make a quick decision about a product because all products would carry a label. Instead, they must read the label, interpret the information, and weigh the relative importance of

each nutrient. In fact, recent experiments comparing the Nutrition Info box to High In schemes found that the Nutrition Info box yielded slower evaluations of products' nutrient profiles and nutrient contents. ^{88,89} This process of interpretation is particularly burdensome if labels send mixed signals – how does a consumer assess the nutritional profile of a product that is high in sodium, but low in added sugar? It has been estimated that approximately 40% of U.S. packaged foods would carry severely mixed labels – labels in which at least one nutrient is "low" and another is "high". ⁸⁷ The FDA's experiment did not test consumer responses to severely mixed labels, despite prior experimental research consistently showing that severely mixed labels confuse consumers. ^{26,80,83} Furthermore, the Nutrition Info box may mislead consumers into thinking that harmful products, such as sugar-sweetened beverages, are healthy because their labels display only one "high" nutrient (added sugar) with two "low" nutrients (sodium and saturated fat). ⁸⁹ For these reasons, we strongly recommend that the FDA adopt a High In labeling scheme over the Nutrition Info box.

6. The FDA should amend the proposed rule to incorporate visual elements into the label design.

The FDA's experimental study found that including a magnifying glass icon did not meaningfully affect U.S. consumers' attention to or use of the Nutrition Info box.⁶⁸ However, the FDA's study was conducted in a highly controlled online setting where consumers were asked to view and spend time interpreting each nutrition label. In the real world, food companies go to great lengths to reduce the salience of nutrition labels so consumers will not notice them, for example, by adding health claims, nutrient-content claims, or other front-of-package marketing. ^{90,91} Therefore, eye-catching visual cues, including borders or a black and white color scheme that stands out from the rest of the packaging, are critical for ensuring the FDA's labels are seen by consumers.

The FDA's finding conflicts with a large body of scientific literature showing that visual elements, including icons and symbols, improve the effectiveness of front-of-package labels and are more easily understood by populations with lower literacy. 75,92-94 Experimental studies across many countries also show that shapes and colors associated with danger, such as octagons, triangles, black, white, red, and yellow, outperform more neutral shapes and colors. 82, 96, 98-101 Additionally, a recent eye-tracking study with US adults found that front-of-package nutrient warnings with images attracted more attention than control labels. 102 To improve consumer attention to and understanding of nutrition information, the FDA should incorporate visual elements into its label design. This could be achieved by including a prominent exclamation mark icon on High In labels, next to "high" nutrients in the Nutrition Info box, or by highlighting "high" nutrients using a red background with white text. A recent experiment found that modifying the Nutrition Info box to highlight "high" in red and removing %DV increased accurate assessments of product nutrient profiles and nutrient contents and perceptions that the label was easy to understand and use. However, both the modified and unmodified Nutrition Info boxes resulted in higher perceived healthfulness of unhealthy products with mixed nutrient profiles (e.g., beef jerky, candy, and soda) relative to High In labels.⁸⁸

7. The FDA should amend the proposed rule to require front-of-package nutrition labels on all packaged foods and drinks, including those marketed to infants and toddlers.

Commercially prepared baby food and follow-up formula are among the first foods with added sugar that are introduced to young children. Evidence from several countries shows that many commercially prepared baby foods and follow-up formulas are high in added sugars and sodium. ¹⁰³⁻¹⁰⁶ For example, a 2015 study of the U.S. food supply found that most commercial toddler meals, cereal bars, breakfast pastries, and infant-toddler snacks and desserts had high sodium content or contained added sugars. ¹⁰³ Furthermore, health claims are common on follow-up formula packages, and studies suggest that such claims can mislead parents and increase product appeal. ¹⁰⁷⁻¹¹¹ Front-of-package labels could help parents identify products high in nutrients of concern and correct misperceptions caused by misleading health claims.

The FDA cited inconsistency between the Daily Reference Values (DRVs) for children aged 1-3 years and the 2020-2025 Dietary Guidelines for Americans as the rationale for including only foods intended for consumption by people four years of age and older. The DRVs should be updated, and the FDA should require front-of-package nutrition labels on products marketed for children under 4 based on the DRVs and resultant percent Daily Values (DVs) that are required on the Nutrition Facts labels of such foods. The FDA should apply the same % DV cutoffs for determining when a food is high in (or high, medium, and low in) added sugars, sodium, and saturated fat as apply for foods marketed for individuals 4 years and older. If the FDA is unable to quickly update the DRVs and DVs for children, the Agency could later expand the rule to include products marketed for this population.

8. The FDA should mandate a non-sugar sweetener disclosure to accompany the front-of-package labeling rule.

Under a mandatory front-of-package labeling scheme, food companies may replace added sugars with non-sugar sweeteners to maintain sweetness and avoid carrying a "High In Added Sugars" label. Following the implementation of Chile's front-of-package labeling law, the proportion of sweet foods and beverages containing non-sugar sweeteners significantly increased. These changes in the Chilean food supply translated to dietary behaviors, with significant increases in purchases and consumption of non-sugar sweeteners, including among children.

The increasing use of non-sugar sweeteners in the food supply is a significant public health concern, as these substances are not recommended for children. The long-term health effects of consuming large amounts of these substances are still unknown. Additionally, early exposure to non-sugar sweeteners increases sweet taste preferences and may influence future dietary patterns. Research has shown that many U.S. parents try to avoid purchasing products containing non-sugar sweeteners for their children, but are confused by product labels. PDA should mandate clear disclosures on products containing non-sugar sweeteners stating that they are not recommended for children, consistent with mandatory labeling regulations in Mexico and Argentina. In experimental studies, such disclosures have increased parents' understanding of product ingredients, decreased perceived healthfulness, and lowered intent to purchased sweetened fruit drinks.

9. The FDA should amend the proposed rule to require that products carry a distinct label for each excess nutrient.

Evidence from countries with mandatory front-of-package labeling policies shows that food companies increase front-of-package marketing to make nutrition labels less visible to consumers. 90,91 The FDA could make its labels more salient by requiring that products carry a distinct label for each excess nutrient (e.g., a product high in added sugars and sodium would carry one "High In Added Sugars" label and one "High In Sodium" label). 88 In a recent study, 3,931 US adults were randomized to view one of five front-of-package labeling systems: FDA's High In label, three kinds of High In labels with icons, and a High In labeling system in which each excess nutrient carried a distinct label, also with icons ("multiple"). Compared to all other conditions, participants viewing the multiple labels were better able to identify high-sodium and high-saturated-fat items (78% vs. 68-72% and 85% vs. 76-80%, respectively, all p < .05). Another recent study of 13,929 US adults compared a multiple label High In scheme (Multiple High In) to the FDA's High In scheme, the Nutrition Info box, a modified Nutrition Info box (no %DV and "High" highlighted red), and a no-label control. 89 The Multiple High In significantly outperformed the Nutrition Info box, helping participants correctly identify the least healthy nutrient profiles and correctly assess product nutrient content as high. The Multiple High In labels also helped people make the quickest product evaluations, while the Nutrition Info box produced the slowest evaluations. Multiple High In was more effective than the other labels and the control in reducing selection of a high-in product in a hypothetical shopping task, helping consumers recall label content, and encouraging label use (all p < 0.001).

Requiring a label for each excess nutrient would also send a clear message to consumers – products with more labels have worse nutrient profiles than products with fewer labels. Research from Chile, which mandates one High-In-style label for each excess nutrient, supports this point.³⁹ One study found that parents used the Chilean labels to set limits for their children on what could be purchased, telling them to "look for the cookies that have the fewest labels". Similarly, teachers used the multiple-label format to promote healthier foods in schools, telling parents not to "bring food with more than two labels" into the classroom. By requiring one label for each excess nutrient, the FDA could make its labels more visible while making it easier for both consumers and institutions to set simple food rules.

10. The FDA should use a nutrient profile model for "High In" that ensures that all products high in sugar, sodium, and saturated fat are indicated as such, regardless of portion size.

Nutrient profile models (NPMs) are definitions comprised of nutrients and nutrient thresholds that determine which product receives what label. Best practices¹²³ for developing NPMs for front-of-package labeling systems suggest that NPMs should 1) align with health goals; 2) consistently identify "High In" foods across food categories and portion size; and 3) be based on scientific evidence, including analyses of the current food supply. NPMs that are too lax run the risk of not adequately identifying all foods and beverages high in nutrients of concern, while NPMs that are too stringent may limit a labeling system's utility to guide consumers to healthier choices (since most or all products may carry a label).

The FDA has proposed using a 20% daily value (DV) model based on precedent established in the 1993 Nutrition Labeling and Education Act of using 20% DV to declare a product "High In" any nutrient (including nutrients of benefit). To our knowledge, the FDA has not studied the coverage of this NPM on the current US food supply nor compared its performance against other NPMs, a critical step towards ensuring a labeling system meets health goals. In fact, a recent paper found that compared to other international NPMs, including those of Canada, Chile (the first country to have a mandatory High In nutrient labeling system), and the Pan American Health Organization, the proposed FDA model would require the fewest products to carry a High In label. This issue was particularly pronounced in categories that tend to be served in small portions (e.g., salty snacks, bars).

To address this issue, we recommend using an NPM similar to the one used by Canada for their High In nutrient labeling system. Canada's model sets thresholds for High In labels that are dependent on "reference amount" or serving size. While the official method of calculation for the Canadian NPM involves adjusting nutrients to align serving sizes with reference amounts for each product category, roughly, this corresponds to: $\geq 10\%$ DV for products with reference amount 30 g or 30 mL or smaller, $\geq 15\%$ DV for products with reference amount over 30 g or 30 mL, and $\geq 30\%$ DV for main dishes. This approach would maintain comparability with the previously proposed approach of 20% while more accurately designating products served in smaller portions with high amounts of added sugar, sodium, and saturated fat as "High In".

In conclusion, and as highlighted in this comment, we strongly support the FDA's proposal for the US to adopt a mandatory, interpretive front-of-package nutrition labeling system that solely highlights key nutrients to limit, but we urge FDA to improve this rule in several ways to ensure it will maximally improve health for the entire US population. We urge federal agencies to act quickly on these recommendations to enable consumers to access the information they need to make healthy choices for themselves and their families.

Sincerely,

Christina A. Roberto, PhD

Mitchell J. Blutt and Margo Krody Blutt Presidential Associate Professor of Health Policy Perelman School of Medicine University of Pennsylvania

Alyssa Moran, ScD, MPH, RDN

Director of Policy and Research, Penn Center for Food and Nutrition Policy Perelman School of Medicine University of Pennsylvania

Marissa G. Hall, PhD

Assistant Professor Department of Health Behavior, Gillings School of Global Public Health University of North Carolina at Chapel Hill

Lindsey Smith Taillie, PhD

Associate Professor and Associate Chair Co-Director, Global Food Research Program Department of Nutrition, Gillings School of Global Public Health University of North Carolina at Chapel Hill

Shu Wen Ng, PhD

Distinguished Professor of Public Health Nutrition Co-Director, Global Food Research Program Department of Nutrition, Gillings School of Global Public Health University of North Carolina at Chapel Hill

Aline D'Angelo Campos, PhD, MPP

Postdoctoral Research Fellow Global Food Research Program University of Noth Carolina at Chapel Hill

Fran Fleming-Milici, PhD

Director of Marketing Initiatives Rudd Center for Food Policy and Health University of Connecticut

Jennifer Falbe, ScD, MPH

Associate Professor of Nutrition and Human Development Department of Human Ecology University of California, Davis

Alexandria E. Reimold, PhD

Postdoctoral Scholar Department of Human Ecology University of California, Davis

Brittany Lemmon, MS

PhD Candidate Graduate Group in Epidemiology University of California, Davis

James Krieger, MD, MPH

Clinical Professor Emeritus School of Public Health University of Washington

Note: The views expressed in this comment letter are those of its authors only. This letter is not submitted on behalf of The University of North Carolina at Chapel Hill, University of Pennsylvania, University of California, University of Connecticut, or University of Washington.

References

- 1. US Food and Drug Administration. FSANS: FDA's Food Safety and Nutrition Survey: 2019 Survey. US Food and Drug Administration; 2021. Accessed September 25, 2022. https://www.fda.gov/food/cfsan-constituent-updates/fda-releases-food-safety-and-nutrition-survey-results
- 2. Campos S, Doxey J, Hammond D. Nutrition labels on pre-packaged foods: A systematic review. Public Health Nutr. 2011;14(8):1496-1506. doi:10.1017/S1368980010003290
- 3. Christoph MJ, Larson N, Laska MN, Neumark-Sztainer D. Nutrition facts panels: Who uses them, what do they use, and how does use relate to dietary intake? J Acad Nutr Diet. 2018;118(2):217-228. doi:10.1016/j.jand.2017.10.014
- 4. Persoskie A, Hennessy E, Nelson WL. US consumers' understanding of nutrition labels in 2013: The importance of health literacy. Prev Chronic Dis. 2017;14:E86. doi:10.5888/pcd14.170066
- 5. Musicus AA, Hua SV, Moran AJ, et al. Front-of-package claims & imagery on fruit-flavored drinks and exposure by household demographics. Appetite. 2022;171:105902.
- 6. Lin CTJ, Zhang Y, Carlton ED, Lo SC. 2014 FDA health and diet survey. FDA Health and Diet Survey. Published 2016. Accessed September 15, 2022. https://www.fda.gov/files/food/published/2014-FDA-Health-and-Diet-Survey--Topline-Frequency-Report.pdf
- 7. Skubisz C. Naturally good: Front-of-package claims as message cues. Appetite. 2017;108:506-511. doi:10.1016/j.appet.2016.10.030
- 8. Graham Dan J, Heidrick C, Hodgin K. Nutrition Label Viewing during a Food-Selection Task: Front-of-Package Labels vs Nutrition Facts Labels. Journal of the Academy of Nutrition and Dietetics. 2015;115(10):1636-1646. doi:10.1016/j.jand.2015.02.019
- 9. Becker MW, Bello NM, Sundar RP, Peltier C, Bix L. Front of pack labels enhance attention to nutrition information in novel and commercial brands. Food policy. 2015;56:76-86.
- 10. Bix L, Sundar RP, Bello NM, Peltier C, Weatherspoon LJ, Becker MW. To See or Not to See: Do Front of Pack Nutrition Labels Affect Attention to Overall Nutrition Information? PLOS One. 2015;10(10):e0139732. doi:10.1371/journal.pone.0139732
- 11. Goodman S, Hammond D, Hanning R, Sheeshka J. The impact of adding front-of-package sodium content labels to grocery products: an experimental study. Public Health Nutrition. 2013;16(3):383-391.

- 12. Grummon AH, Taillie LS, Golden SD, Hall MG, Ranney LM, Brewer NT. Sugar-sweetened beverage health warnings and purchases: A randomized controlled trial. Am J Prev Med. 2019;57(5):601-610. doi:https://doi.org/10.1016/j.amepre.2019.06.019
- 13. Hall MG, Grummon AH, Higgins I, et al. The impact of pictorial health warnings on purchases of sugary drinks for children: A randomized controlled trial. PLOS Med. 2022;19(1):e1003885. doi:10.1371/journal.pmed.1003885
- 14. Taillie LS, Reyes M, Colchero MA, Popkin B, Corvalán C. An evaluation of Chile's Law of Food Labeling and Advertising on sugar-sweetened beverage purchases from 2015 to 2017: A before-and-after study. PLOS Med. 2020;17(2):e1003015. doi:10.1371/journal.pmed.1003015
- 15. Machin L, Curutchet MR, Giménez A, Aschemann-Witzel J, Ares G. Do nutritional warnings do their work? Results from a choice experiment involving snack products. Food Quality and Preference. 2019;77:159-165.
- 16. Poquet D, Ginon E, Goubel B, et al. Impact of a front-of-pack nutritional traffic-light label on the nutritional quality and the hedonic value of mid-afternoon snacks chosen by mother-child dyads. Appetite. 2019;143:104425. doi:10.1016/j.appet.2019.104425
- 17. Taillie LS, Bercholz M, Popkin B, Rebolledo N, Reyes M, Corvalán C. Decreases in purchases of energy, sodium, sugar, and saturated fat 3 years after implementation of the Chilean food labeling and marketing law: An interrupted time series analysis. PLOS Medicine. 2024;21(9):e1004463. doi:10.1371/journal.pmed.100446310.1371
- 18. Jones A, Shahid M, Neal B. Uptake of Australia's Health Star Rating system. Nutrients. 2018;10(8):997. doi: 10.3390/nu10080997
- 19. Mhurchu CN, Eyles H, Choi YH. Effects of a voluntary front-of-pack nutrition labelling system on packaged food reformulation: the Health Star Rating system in New Zealand. Nutrients. 2017;9(8):9180. doi: 10.3390/nu9080918
- 20. Vandevijvere S. Uptake of Nutri-Score during the first year of implementation in Belgium. Arch Public Health. 2020;78(1):107. doi: 10.1186/s13690-020-00492-1
- 21. Fedde S, Büttner-Koch S, Plähn V, Bosy-Westphal A. Implementation of Nutri-Score. Ernahrungs Umsch. 2022;69(5):48-55.
- 22. Narayanane G, Giraudeau B, Molina V, Allais O, Soler LG. Evolution des parts de marché des marques engages dans la démarche Nutri-Score en France entre 2018 et 2023. INRAE;2023:54. https://hal.science/hal-04356926
- 23. Mackay DS, Pakenham L, Mhurchu CN. Health Star Rating label uptake in NZ: analysis in 2023 relative to target. Published online 2024.

- 24. Rebolledo N, Ferrer-Rosende P, Reyes M, Taillie LS, Corvalán C. Food industry compliance with the display of front-of-package warning labels at the final phase (2020) of Chile's Labeling and Advertising Law. Am J Public Health. 2024:e1-e8. doi: 10.2105/AJPH.2024.307843.
- 25. Morrison H, Meloncelli N, Pelly FE. Nutritional quality and reformulation of a selection of children's packaged foods available in Australian supermarkets: has the Health Star Rating had an impact? Nutr Diet. 2019;76(3):296-304. doi: 10.1111/1747-0080.12486
- 26. Song J, Brown MK, Tan M, et al. Impact of color-coded and warning nutrition labelling schemes: a systematic review and network meta-analysis. PLOS Med. 2021;18(10):e1003765. doi: 10.1371/journal.pmed.1003765
- 27. Hagmann D, Siegrist M. Nutri-Score, multiple traffic light and incomplete nutrition labelling on food packages: Effects on consumers' accuracy in identifying healthier snack options. Food Qual Prefer. 2020;83:103894. doi: 10.1016/j.foodqual.2020.103894
- 28. Andrews JC, Burton S, Kees J. Is simpler always better? Consumer evaluations of front-of-package nutrition symbols. J Public Policy Mark. 2011;30(2):175-190.
- 29. Bustamante A, Beltrán L, Melgoza E, Méndez C. Implementation lessons from Latin America to prevent and reduce childhood obesity in the United States; 2023. https://escholarship.org/content/qt379973rh/qt379973rh.pdf
- 30. Pettigrew S, Jongenelis M, Maganja D, Hercberg S, Julia C. The ability of nutrition warning labels to improve understanding and choice outcomes among consumers demonstrating preferences for unhealthy foods. J Acad Nutr Diet. 2024;124(1):58-64.e1. doi: 10.1016/j.jand.2023.08.135.
- 31. Vandevijvere S, Vanderlee L. Effect of Formulation, Labelling, and Taxation Policies on the Nutritional Quality of the Food Supply. Current Nutrition Reports. 2019;8(3):240-249. doi:10.1007/s13668-019-00289-x
- 32. Ares G, Antúnez L, Curutchet MR, Giménez A. Warning labels as a policy tool to encourage healthier eating habits. Curr Opin Food Sci. 2023;51:101011. doi: 10.1016/j.cofs.2023.101011
- 33. Ganderats-Fuentes M, Morgan S. Front-of-package nutrition labeling and its impact on food industry practices: a systematic review of the evidence. Nutrients. 2023;15(11):2630. doi: 10.3390/nu15112630
- 34. Russell C, Dickie S, Baker P, Lawrence M. Does the Australian Health Star Rating system encourage added sugar reformulation? Trends in sweetener use in Australia. *Nutrients*. 2021;13(3):898. doi: 10.3390/nu13030898
- 35. Bablani L, Mhurchu CN, Neal B, Skeels CL, Staub KE, Blakely T. The impact of voluntary front-of-pack nutrition labelling on packaged food reformulation: a difference-in-differences

- analysis of the Australasian Health Star Rating scheme. PLOS Med. 2020;17(11):e1003427. doi: 10.1371/journal.pmed.1003427
- 36. Reyes M, Taillie LS, Popkin B, Kanter R, Vandevijvere S, Corvalán C. Changes in the amount of nutrient of packaged foods and beverages after the initial implementation of the Chilean Law of Food Labelling and Advertising: A nonexperimental prospective study. PLOS Med. 2020;17(7):e1003220. doi:10.1371/journal.pmed.1003220
- 37. Reyes M, Garmendia ML, Olivares S, Aqueveque C, Zacarías I, Corvalán C. Development of the Chilean front-of-package food warning label. BMC Public Health. 2019;19(1):906.
- 38. Taillie LS, Busey E, Stoltze FM, Dillman Carpentier FR. Governmental policies to reduce unhealthy food marketing to children. Nutrition reviews. 2019;77(11):787-816.
- 39. Correa T, Fierro C, Reyes M, Dillman Carpentier FR, Taillie LS, Corvalan C. Responses to the Chilean law of food labeling and advertising: Exploring knowledge, perceptions and behaviors of mothers of young children. Int J Behav Nutr Phys Act. 2019;16(1):21. doi:10.1186/s12966-019-0781-x
- 40. Nathan R, Yaktine A, Lichtenstein AH, Wartella EA. Front-of-Package Nutrition Rating Systems and Symbols: Promoting Healthier Choices. National Academies Press; 2012.
- 41. Kelly B, Jewell J. What Is the Evidence on the Policy Specifications, Development Processes and Effectiveness of Existing Front-of-Pack Food Labelling Policies in the WHO European Region? (2018). World Health Organization; 2018. Accessed June 12, 2022. https://www.euro.who.int/en/publications/abstracts/what-is-the-evidence-on-the-policy-specifications,-development-processes-and-effectiveness-of-existing-front-of-pack-food-labelling-policies-in-the-who-european-region-2018
- 42. World Health Organization. European Food and Nutrition Action Plan 2015–2020. World Health Organization; 2015. Accessed September 15, 2022. https://apps.who.int/iris/handle/10665/329405
- 43. Petty RE, Cacioppo JT. Communication and Persuasion: Central and Peripheral Routes to Attitude Change. Springer; 1986. doi:10.1016/S0065-2601(08)60214-2
- 44. Milosavljevic M, Koch C, Rangel A. Consumers can make decisions in as little as a third of a second. Judgment and Decision Making. 2011;6:520-530.
- 45. Feteira-Santos R, Fernandes J, Virgolino A, et al. Effectiveness of interpretive front-of-pack nutritional labelling schemes on the promotion of healthier food choices: a systematic review. JBI Evidence Implementation. 2020;18(1):24-37.
- 46. Maubach N, Hoek J, Mather D. Interpretive front-of-pack nutrition labels. Comparing competing recommendations. Appetite. 2014;82:67-77. doi:10.1016/j.appet.2014.07.006

- 47. Egnell M, Talati Z, Hercberg S, Pettigrew S, Julia C. Objective Understanding of Front-of-Package Nutrition Labels: An International Comparative Experimental Study across 12 Countries. Nutrients. 2018;10(10):1542. doi:10.3390/nu10101542
- 48. Talati Z, Pettigrew S, Ball K, et al. The relative ability of different front-of-pack labels to assist consumers discriminate between healthy, moderately healthy, and unhealthy foods. Food Quality and Preference. 2017;59:109-113. doi:10.1016/j.foodqual.2017.02.010
- 49. Egnell M, Talati Z, Galan P, et al. Objective understanding of the Nutri-score front-of-pack label by European consumers and its effect on food choices: an online experimental study. Int J Behav Nutr Phys Act. 2020;17(1):1-13. doi:10.1186/s12966-020-01053-z
- 50. Deliza R, de Alcantara M, Pereira R, Ares G. How do different warning signs compare with the guideline daily amount and traffic-light system? Food Quality and Preference. 2020;80:103821. doi:10.1016/j.foodqual.2019.103821
- 51. Egnell M, Talati Z, Pettigrew S, Galan P, Hercberg S, Julia C. Comparison of front-of-pack labels to help German consumers understand the nutritional quality of food products. Color-coded labels outperform all other systems. Ernahr Umsch. 2019;66:76-84.
- 52. Arrúa A, Machín L, Curutchet MR, et al. Warnings as a directive front-of-pack nutrition labelling scheme: Comparison with the Guideline Daily Amount and traffic-light systems. Public health nutrition. 2017;20(13):2308-2317.
- 53. Hall MG, Lee CJY, D'Angelo Campos A, et al. Effects of front-of-package nutrition labels on Latine and limited English proficiency populations: a randomized trial (May 11, 2025). Available at: https://www.medrxiv.org/content/10.1101/2025.05.09.25327177v1
- 54. Cecchini M, Warin L. Impact of food labelling systems on food choices and eating behaviours: A systematic review and meta-analysis of randomized studies. Obesity Reviews. 2016;17(3):201-210.
- 55. Talati Z, Egnell M, Hercberg S, Julia C, Pettigrew S. Food choice under five front-of-package nutrition label conditions: an experimental study across 12 countries. Am J Public Health. 2019;109(12):1770-1775. doi:10.2105/AJPH.2019.305319
- 56. Neal B, Crino M, Dunford E, et al. Effects of Different Types of Front-of-Pack Labelling Information on the Healthiness of Food Purchases—A Randomised Controlled Trial. Nutrients. 2017;9(12):1284. doi:10.3390/nu9121284
- 57. Ikonen I, Sotgiu F, Aydinli A, Verlegh PW. Consumer effects of front-of-package nutrition labeling: An interdisciplinary meta-analysis. Journal of the Academy of Marketing Science. 2020;48(3):360-383.

- 58. Egnell M, Boutron I, Péneau S, et al. Front-of-pack labeling and the nutritional quality of students' food purchases: a 3-arm randomized controlled trial. American Journal of Public Health. 2019;109(8):1122-1129.
- 59. Talati Z, Egnell M, Hercberg S, Julia C, Pettigrew S. Consumers' Perceptions of Five Front-of-Package Nutrition Labels: An Experimental Study Across 12 Countries. Nutrients. 2019;11(8):1934. doi:10.3390/nu11081934
- 60. Pettigrew S, Talati Z, Miller C, Dixon H, Kelly B, Ball K. The types and aspects of front-of-pack food labelling schemes preferred by adults and children. Appetite. 2017;109:115-123. doi:10.1016/j.appet.2016.11.034
- 61. Acton RB, Vanderlee L, Hammond D. Influence of front-of-package nutrition labels on beverage healthiness perceptions: Results from a randomized experiment. Prev Med. 2018;115:83-89. doi:10.1016/j.ypmed.2018.08.022
- 62. U.S. Department of Agriculture (USDA) and U.S. Department of Health and Human Services (USDHHS). Dietary Guidelines for Americans, 2020-2025. December 2020.
- 63. https://www.globalfoodresearchprogram.org/wp-content/uploads/2025/03/GFRP-UNC FOPL maps 2025 3.pdf
- 64. Food and Drug Administration Memorandum, "Consumer Reactions to Four Different Front-of-Package (FOP) Nutrition Labeling Schemes—2022 Focus Group Findings." HHS, FDA, Center for Food Safety and Applied Nutrition. Prepared by L. Verrill, J. Behm, F. Wu, and K. Meadows, 2024.
- 65. Ducrot P, Julia C, Mejean C, et al. Impact of Different Front-of-Pack Nutrition Labels on Consumer Purchasing Intentions: A Randomized Controlled Trial. Am J Prev Med. May 2016;50(5):627-636.
- 66. Gorski Findling MT, Werth PM, Musicus AA, et al. Comparing five front-of-pack nutrition labels' influence on consumers' perceptions and purchase intentions. Prev Med. Jan 2018;106:114-121.
- 67. Boztuğ Y, Juhl HJ, Elshiewy O, Jensen MB. Consumer response to monochrome Guideline Daily Amount nutrition labels. Food Policy. 2015;53:1-8.
- 68. U.S. Food and Drug Administration Report, "Quantitative Research on Front of Package Labeling on Packaged Foods." HHS, FDA, Human Foods Program. May 2024. https://www.fda.gov/media/185007/download?attachment
- 69. Roberto CA, Ng SW, Ganderats-Fuentes M, et al. The influence of front-of-package nutrition labeling on consumer behavior and product reformulation. Annu Rev Nutr. 2021;41:529-550. doi:10.1146/annurev-nutr-111120-094932

- 70. Milosavljevic M, Koch C, Rangel A. Consumers can make decisions in as little as a third of a second. Judgment and Decision Making. 2011;6:520-530.
- 71. Croker H, Packer J, Russell SJ, Stansfield C, Viner RM. Front of pack nutritional labelling schemes: a systematic review and meta-analysis of recent evidence relating to objectively measured consumption and purchasing. J Hum Nutr Diet. 2020;33(4):518-537. doi:10.1111/jhn.12758
- 72. Bertorello NB, Minin F, Viscardi S, et al. Effects of nutritional profile system and front labeling infood selection during purchases: a systematic review. Arch Latinoam Nutr. 2023;73(2):144-153. doi:10.37527/2023.73.2.006
- 73. Acton RB, Jones AC, Kirkpatrick SI, Roberto CA, Hammond D. Taxes and front-of-package labels improve the healthiness of beverage and snack purchases: a randomized experimental marketplace. Int J Behav Nutr Phys Act. 2019;16(1):1-15. doi:10.1186/s12966-019-0799-0
- 74. Arrúa A, Curutchet MR, Rey N, et al. Impact of front-of-pack nutrition information and label design on children's choice of two snack foods: Comparison of warnings and the traffic-light system. Appetite. 2017;116:139-146. doi:10.1016/j.appet.2017.04.012
- 75. Taillie LS, Hall MG, Popkin BM, Ng SW, Murukutla N. Experimental Studies of Front-of-Package Nutrient Warning Labels on Sugar-Sweetened Beverages and Ultra-Processed Foods: A Scoping Review. Nutrients. 2020;12(2):569. doi:10.3390/nu12020569
- 76. Franco-Arellano B, Vanderlee L, Ahmed M, Oh A, L'Abbé M. Influence of front-of-pack labelling and regulated nutrition claims on consumers' perceptions of product healthfulness and purchase intentions: A randomized controlled trial. Appetite. 2020;149:104629. doi:10.1016/j.appet.2020.104629
- 77. Hock K, Acton RB, Jáuregui A, Vanderlee L, White CM, Hammond D. Experimental study of front-of-package nutrition labels' efficacy on perceived healthfulness of sugar-sweetened beverages among youth in six countries. Prev Med Rep. 2021;24:101577. doi:10.1016/j.pmedr.2021.101577
- 78. Patino SRG, Carriedo Á, Tolentino-Mayo L, et al. Front-of-pack warning labels are preferred by parents with low education level in four Latin American countries. World Nutr. 2019;10(4):11-26. doi:10.26596/wn.201910411-26
- 79. Nieto C, Jáuregui A, Contreras-Manzano A, et al. Understanding and use of food labeling systems among Whites and Latinos in the United States and among Mexicans: Results from the International Food Policy Study, 2017. Int J Behav Nutr Phys Act. 2019;16(1):87. doi:10.1186/s12966-019-0842-1
- 80. Vargas-Meza J, Jáuregui A, Contreras-Manzano A, Nieto C, Barquera S. Acceptability and understanding of front-of-pack nutritional labels: an experimental study in Mexican consumers. BMC Public Health. 2019;19(1):1751. doi:10.1186/s12889-019-8108-z

- 81. Jáuregui A, White CM, Vanderlee L, et al. Impact of front-of-pack labels on the perceived healthfulness of a sweetened fruit drink: a randomised experiment in five countries. Public Health Nutr. 2022;25(4):1094-1104. doi:10.1017/S1368980021004535
- 82. La Superioridad de Los Sellos Octagonales de Advertencia Nutricional En Panamá. Organización Panamericana de la Salud; 2022. https://iris.paho.org/bitstream/handle/10665.2/56323/OPSNMHRF220026_spa.pdf?sequence =5&isAllowed=y
- 83. Khandpur N, de Morais Sato P, Mais LA, et al. Are Front-of-Package Warning Labels More Effective at Communicating Nutrition Information than Traffic-Light Labels? A Randomized Controlled Experiment in a Brazilian Sample. Nutrients. 2018;10(6):688. doi:10.3390/nu10060688
- 84. Deliza R, de Alcantara M, Pereira R, Ares G. How do different warning signs compare with the guideline daily amount and traffic-light system? Food Qual Prefer. 2020;80:103821. doi:10.1016/j.foodqual.2019.103821
- 85. Arrúa A, Machín L, Curutchet MR, et al. Warnings as a directive front-of-pack nutrition labelling scheme: comparison with the Guideline Daily Amount and traffic-light systems. Public Health Nutr. 2017;20(13):2308-2317. doi:10.1017/S1368980017000866
- 86. Bandeira LM, Pedroso J, Toral N, Gubert MB. Performance and perception on front-of-package nutritional labeling models in Brazil. Rev Saúde Pública. 2021;55:19. doi:10.11606/s1518-8787.2021055002395
- 87. Prevalence of front-of-package labels on packaged foods in supermarkets under two proposed labeling systems. Healthy Eating Research Annual Grantee Meeting. Durham, NC.
- 88. Lemmon B, Grummon AH, Marquez A, et al. An online randomized controlled trial comparing front-of-package nutrient labels on consumer understanding, perceptions, and behavior (June 17, 2025). Available at: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=5309812
- 89. Falbe J, Lemmon B, Grummon AH, et al. Front-of-package nutrient labels: efficacy and unintended consequences in an online experiment (July 7, 2025). Available at: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=5336591
- 90. Yadin S. Manipulating disclosure: creative compliance in the Israeli food industry: misinformation, disinformation, and the law. St Louis Univ Law J. 2021;66(1).
- 91. Crosbie E, Alvarez MGO, Cao M, et al. Implementing font-of-pack nutrition warning labels in Mexico: important lessons for low- and middle-income countries. Public Health Nutr. 2023 Jul 31;26(10):2161. doi: 10.1017/S1368980023001441s

- 92. De la Cruz-Góngora V, Torres P, Contreras-Manzano A, et al. Understanding and acceptability by Hispanic consumers of four front-of-pack food labels. Int J Behav Nutr Phys Act. 2017;14(1):28. doi: 10.1186/s12966-017-0482-2
- 93. Hall MG, Lazard AJ, Grummon AH, et al. Designing warnings for sugary drinks: A randomized experiment with Latino parents and non-Latino parents. Prev Med. 2021;148:106562. doi:10.1016/j.ypmed.2021.106562
- 94. Grummon AH, Ruggles PR, Greenfield TK, Hall MG. Designing Effective Alcohol Warnings: Consumer Reactions to Icons and Health Topics. Am J Prev Med. 2023;64(2):157-166. doi:10.1016/j.amepre.2022.09.006
- 95. Acton RB, Vanderlee L, Roberto CA, Hammond D. Consumer perceptions of specific design characteristics for front-of-package nutrition labels. Health Educ Res. 2018;33(2):167-174. doi:10.1093/her/cyy006
- 96. Cabrera M, Machín L, Arrúa A, et al. Nutrition warnings as front-of-pack labels: influence of design features on healthfulness perception and attentional capture. Public Health Nutr. 2017;20(18):3360-3371. doi:10.1017/S136898001700249X
- 97. Goodman S, Vanderlee L, Acton R, Mahamad S, Hammond D. The Impact of Front-of-Package Label Design on Consumer Understanding of Nutrient Amounts. Nutrients. 2018;10(11):1624. doi:10.3390/nu10111624
- 98. Grummon AH, Hall MG, Taillie LS, Brewer NT. How should sugar-sweetened beverage health warnings be designed? A randomized experiment. Prev Med. 2019;121:158-166. doi:10.1016/j.ypmed.2019.02.010
- 99. Jáuregui A, Vargas-Meza J, Nieto C, et al. Impact of front-of-pack nutrition labels on consumer purchasing intentions: a randomized experiment in low- and middle-income Mexican adults. BMC Public Health. 2020;20(1):463. doi:10.1186/s12889-020-08549-0
- 100. White-Barrow V, Gomes FS, Eyre S, et al. Effects of front-of-package nutrition labelling systems on understanding and purchase intention in Jamaica: results from a multiarm randomised controlled trial. BMJ Open. 2023;13(4):e065620. doi:10.1136/bmjopen-2022-065620
- 101. Mora-Plazas M, Higgins ICA, Gomez LF, et al. Impact of nutrient warning labels on choice of ultra-processed food and drinks high in sugar, sodium, and saturated fat in Colombia: A randomized controlled trial. PLOS One. 2022;17(2):e0263324
- 102. Hall MG, Grummon AH, Whitesell C, et al. Evaluating text, icon, and graphic nutrition labels: an eye tracking experiment with Latino adults in the US. Appetite. 2025 Jan 1:204:107745. doi: 10.1016/j.appet.2024.107745

- 103. Maalouf J, Cogswell ME, Bates M, et al. Sodium, sugar, and fat content of complementary infant and toddler foods sold in the United States, 2015 Am J Clin Nutr. 2017;105(6):1443-1452. doi:10.3945/ajcn.116.142653
- 104. Erzse A, Marais NC, Hofman KJ, Christofides NJ. Evidence for high sugar content of baby foods in South Africa. S Afr Med J. 2019;109(5):328-332.
- 105. McCann JR, Russell CG, Woods JL. The Nutritional Profile and On-Pack Marketing of Toddler-Specific Food Products Launched in Australia between 1996 and 2020. Nutrients. 2022;14(1):163. doi:10.3390/nu14010163
- 106. Qazi N, Pawar M, Tharakan AP, Padhy P. Sugar and Salt Content of Commercially Available Infant Formulas and Baby Foods in the Indian Marketplace and its Comparison to the Recommended Intake Guidelines. Indian J Community Med. 2021;46(4):757. doi:10.4103/ijcm.IJCM 1 21
- 107. Richter APC, Grummon AH, Falbe J, et al. Toddler milk: a scoping review of research on consumption, perceptions, and marketing practices. Nutr Rev. 2024;82(3):425-436. doi:10.1093/nutrit/nuad057
- 108. Pomeranz JL, Romo Palafox MJ, Harris JL. Toddler drinks, formulas, and milks: Labeling practices and policy implications. Prev Med. 2018;109:11-16. doi:10.1016/j.ypmed.2018.01.009
- 109. Richter APC, Duffy EW, Smith Taillie L, Harris JL, Pomeranz JL, Hall MG. The Impact of Toddler Milk Claims on Beliefs and Misperceptions: A Randomized Experiment with Parents of Young Children. J Acad Nutr Diet. 2022;122(3):533-540.e3. doi:10.1016/j.jand.2021.08.101
- 110. Duffy EW, Taillie LS, Richter APC, Higgins ICA, Harris JL, Hall MG. Parental Perceptions and Exposure to Advertising of Toddler Milk: A Pilot Study with Latino Parents. Int J Environ Res Public Health. 2021;18(2):528. doi:10.3390/ijerph18020528
- 111. C. Richter AP, W. Duffy E, Higgins ICA, et al. Toddler Milk Perceptions and Responses to Front-of- Package Claims and Product Warnings: A Qualitative Study of Caregivers of Toddlers. J Acad Nutr Diet. 2023;123(11):1568-1577.e3. doi:10.1016/j.jand.2023.06.281
- 112. Zancheta Ricardo C, Corvalán C, Smith Taillie L, Quitral V, Reyes M. Changes in the Use of Non-nutritive Sweeteners in the Chilean Food and Beverage Supply After the Implementation of the Food Labeling and Advertising Law. Front Nutr. 2021;8. doi:10.3389/fnut.2021.773450
- 113. Rebolledo N, Reyes M, Popkin BM, et al. Changes in nonnutritive sweetener intake in a cohort of preschoolers after the implementation of Chile's Law of Food Labelling and Advertising. Pediatric Obesity. 2022;17(7):e12895. doi:10.1111/ijpo.12895
- 114. Johnson RK, Lichtenstein AH, Anderon AM, et al. Low-calorie Sweetened Beverages and Cardiometabolic Health: A Science Advisory from the American Heart Association Circulation. 2018;138

- 115. Lott M et al. Healthy beverage consumption in school-age children and adolescents: recommendations from key national health and nutrition organizations. Technical scientific report. Durham, NC: Healthy Eating Research. 2025.
- 116. Lott M, Callahan E, Welker Duffy E, et al. Healthy beverage consumption in early childhood: recommendations from key national health and nutrition organizations. Technical scientific report. *Durham, NC: Healthy Eating Research.* 2019. Nov;144(5):e20192765. doi: 10.1542/peds.2019-2765. PMID: 31659005.
- 117. Toews I, Lohner S, Küllenberg de Gaudry D, Sommer H, Meerpohl JJ. Association between intake of non-sugar sweeteners and health outcomes: systematic review and meta-analyses of randomised and non-randomised controlled trials and observational studies. BMJ. 2019;364:k4718. 10.1136/bmj.k4718
- 118. Baker-Smith CM, de Ferranti SD, Cochran WJ, Committee on Nutrition, Section on Gastroenterology, Hepatology, and Nutrition. The Use of Nonnutritive Sweeteners in Children. Pediatrics. 2019;144(5). 10.1542/peds.2019-2765.
- 119. Sylvetsky AC, Greenberg M, Zhao X, Rother KI. What Parents Think about Giving Nonnutritive Sweeteners to Their Children: A Pilot Study. International Journal of Pediatrics. 2014;2014(2014):819872-5. 10.1155/2014/819872.
- 120. Harris JL, Pomeranz JL. Misperceptions about added sugar, non-nutritive sweeteners and juice in popular children's drinks: Experimental and cross-sectional study with US parents of young children (1-5 years). Pediatric Obesity. 2021:e12791.
- 121. Fleming-Milici F, Phaneuf L, Harris JL. Marketing of sugar-sweetened children's drinks and parents' misperceptions about benefits for young children. Matern Child Nutr. 2022 Jul;18(3):e13338.
- 122. Fleming-Milici F, Gershman H, Pomeranz J, Harris JL. Effects of a front-of-package disclosure on accuracy in assessing children's drink ingredients: two randomized controlled experiments with US caregivers of young children. Public Health Nutr. 2023 Dec;26(12):2790-2801.
- 123. Gitz E, Orlan E, Gallardo Patiño ER, Schoj V. Nutrient profile models: A valuable tool for developing healthy food policies. Global Health Advocacy Incubator. 2024. Available: https://assets.advocacyincubator.org/uploads/2024/NPM_Position_Paper.pdf?_gl=1*1xd35z7*_gcl_au*MTQ0NzYxODA5My4xNzQ2NzI3MzQy
- 124. Dunford EK, Miles DR, Hollingsworth BA. Defining "high-in" saturated fat, sugar, and sodium to help inform front-of-pack labeling efforts for packaged foods and beverages in the United States. Nutrients. 2024 Dec 17;16(24):4345. doi: 10.3390/nu16244345